Inverse Problems Symposium 2025

Name: Khonatbek Khompysh

Organization: Institute of Mathematics and Mathematical Modellin

Abstract Title: Inverse problems for evolution equations with p-Laplacian and damping

Authors: Khonatbek Khompysh

Inverse problems for nonlinear evolution equations with p-Laplacian and damping

Kh. Khompysh 1,2

 1) Institute Mathematics and Mathematical Modeling, Kazakhstan konat_k@mail.ru 2

) Al-Farabi Kazakh National University, Kazakhstan

In this work we study the inverse problems for the following nonlinear parabolic and pseudoparabolic equations perturbed by p-Laplacian and damp-ing term

$$u_t - \operatorname{div} \left(|\nabla u|^{p-2} \nabla u \right) = \gamma |u|^{\sigma-2} u + F(u, x, t) \operatorname{in} Q_T,$$
 (1)

and

$$u_t - \Delta u_t - \operatorname{div} \qquad \left(|\nabla u|^{p-2} \nabla u \quad \right) = \gamma |u|^{\sigma-2} u + F(u, x, t) \operatorname{in} Q_T,$$
 (2)

where the function F considered in two cases: F(u, x, t) = f(t)u(x, t) + g(x, t) or F(u, x, t) = f(t)g(x, t). The inverse problems consist of finding f(t) and u(x, t) in (1) and (2) under the following initial and boundary conditions

$$u(x,0) = u_0(x)$$
 in Ω and $u(x,t) = 0$ on Γ_T . and the given (3)

integral measurement

$$\int_{\Omega} u(x,t)\omega(x)dx = e(t), t \in [0,T]. \tag{4}$$

Here $Q_T = \{(x,t): x \in \Omega, \ 0 < t \le T \}$ is a bounded cylinder and $\Omega \subset \mathbb{R}^d$ $d \ge 2$, is a bounded domain with a smooth boundary $\partial \Omega$, $\Gamma_T = \partial \Omega \times [0,T]$, $T < \infty$. The functions g, u_0, ω , and e are given. The coefficient γ is a given real number with the sign that might be positive $\gamma \ge 0$ either negative $\gamma \le 0$. The exponents p and σ are also given numbers, such that

$$1 < p, \sigma < \infty. \tag{5}$$

Under suitable assumptions on the data, we establish global and local int time existence and uniqueness of weak generalized solutions of the inverse prob-lem (1)-(4).

Acknowledgments. First author supported by the Grant No. AP23486218 of the Ministry of Higher Education and Science of the Republic of Kazakhstan.